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Abstract
Considering electron–impurity, electron–acoustic-phonon and electron–optical-phonon
scatterings, the nonlinear steady-state transport properties of graphene are studied theoretically
by means of the balance equation approach. We find that the conductivity as a function of
electric field strength, E , exhibits strongly nonlinear behavior for E larger than a critical value,
Ec ≈ 0.1 kV cm−1. With the increase of E from zero, the conductivity first decreases slowly
and then it falls rapidly when E > Ec. The dependence of electron temperature on E is also
demonstrated.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, graphene, a single-atom-thick two-dimensional
(2D) layer of carbon atoms in a hexagonal honey-combed
lattice composed of two superposed triangular sub-lattices,
has attracted a great deal of theoretical and experimental
attention [1–5]. In this 2D system, the energy of carriers in
the vicinity of two nodal (‘Dirac’) points of the Brillouin zone
linearly depends on the carrier momentum and the low-energy
carriers behave as massless, two-dimensional, relativistic
fermions [6–8]. Such an unusual electronic structure leads
to many interesting phenomena, including high mobility at
room temperature, finite residual conductivity in the limit
of vanishing carrier density [1, 9], the room-temperature
quantum Hall effect [10], etc. Graphene also has great
potential applications in industry. To date, applications of
graphene as graphene-based chemical sensors [11], spin-valve
devices [12], electromechanical resonators [13], etc have been
demonstrated.

In the first experiment involving graphene, a finite
‘residual’ conductivity, σres ≈ 4e2/h, in the carrier density
dependence of conductivity at zero gate voltage was observed.
This unusual transport property stimulates an extensively
theoretical investigation on the linear transport in graphene.
Much theoretical effort has been devoted to the quantitative
explanation of the observed σres [14–33]. However, the issue
has been confused with the findings of various values of
residual conductivity by using different theoretical approaches.
For relatively high electron density, the conductivity σ

in graphene was found to be proportional to the charge
density N as σ ≈ 20(e2/h)(N/ni) (ni is the impurity
density) [26, 28]. In the presence of only electron–acoustic-
phonon scattering, the linear transport properties in high-
electron-density graphene have also been investigated [34]. It
was found that the resistivity ρ is proportional to T at relative
high temperature, while ρ varies as T 4 at low temperature.

In this paper, we investigate the nonlinear dc transport
properties of graphene by means of the balance equation
approach, considering electron–impurity, electron–acoustic-
phonon, and electron–optical-phonon scatterings. To our
knowledge, the transport of graphene driven by a strong dc
electric field has only been studied by Akturka and Goldsman
using the Monte-Carlo method [35]. The balance equation
approach, which includes force- and energy-balance equations,
has been proven to be useful and convenient for studying
steady-state high-field transport in semiconductors [36–38].
Applying this method to a graphene system, we find that a
strong nonlinear effect in the dependence of conductivity on
the electric field strength, E , appears when E is larger than
a critical value Ec of about 0.1 kV cm−1. The conductivity
decreases slowly with an increase of E from zero to Ec

while it falls rapidly with a further increase of E . We also
find that, at low lattice temperature, electron temperature Te

sharply increases to 300–400 K when E increases. This
effect comes from the fact that the electron–optical-phonon
scattering, which provides an effective energy dissipation
channel, is important only for Te > 300 K.
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This paper is organized as follows. In section 2, the
balance equation approach in the graphene system is presented.
The numerical investigation on the nonlinear transport in
graphene is shown in section 3. Finally, the results are
concluded in section 4.

2. Balance equations in graphene

We consider a single-layer graphene in the x-y plane driven
by an in-plane strong uniform dc electric field, E. In this
system, there are two valleys in the first Brillouin zone. Near
each valley, the wavefunction of an electron with momentum
k = (kx, ky) = (k cos φk, k sin φk) (k = |k| is the magnitude
of k and φk = arctan(ky/kx) is its polar angle) can be written
as [39]

|k〉 = 1√
2

(
1

eiφk

)
, (1)

and the dispersion relation of energy takes the form

ε(k) = h̄vF|k| = h̄vFk, (2)

with vF as the Fermi velocity. Apparently, both valleys make
the same contributions to the transport. Hence, we neglected
the valley index for simplicity.

In the present paper, we will use the balance equation
approach to investigate the dc nonlinear transport in graphene.
The balance equation approach is one of the most powerful
tools for studying the nonlinear transport in semiconductors.
It separates the center-of-mass motion from the relative
motion of the many-electron system and the system can be
described by single particle energy bands. The electron–
electron interactions, in addition to their role in promoting the
thermalization, are taken into account mainly as the screening
(for a review, see [37]). For simplicity we will take only static
screening into consideration.

In the balance equation approach, the transport properties
of electrons in an arbitrary energy band are described by
the lattice momentum shift pd , electron temperature Te, and
chemical potential μ. These parameters are determined by the
force- and energy-balance equations taking the forms [38]

eE ·K + ai + ap = 0, (3)

eE ·vd − w = 0, (4)

with
vd = 〈v̂〉 = gsgv

N

∑
k

v(k) f (ε̄(k), Te) (5)

as the drift velocity, and

K = gsgv

N

∑
k

1

h̄2 ∇k∇kε(k) f (ε̄(k), Te) (6)

as the ensemble-averaged inverse effective mass tensor.
f (ε̄(k), Te) = {exp[(ε̄(k) − μ)/(kBTe)] + 1}−1 [ε̄(k) =
ε(k − pd)] is the displaced Fermi distribution function of
electrons driven by a strong dc field. It relates to the total
number of electrons N by

N = gsgv

∑
k

f (ε̄(k), Te), (7)

with gs = 2 and gv = 2 as the spin and valley degeneracies,
respectively. In equations (3) and (4), ai is the acceleration
due to electron–impurity scattering, while ap and w are,
respectively, the acceleration and energy dissipation rate
arising from electron–phonon interaction.

In 2D gated graphene, the main electron–impurity
scattering comes from ionized dopants within a narrow space
charge layer with total area density ni at a distance d from the
interface in the substrate side. This scattering can be described
by a potential u(q) of the form

u(q) = v(q, d)

ε(q)
, (8)

with v(q, d) = e2 exp(−qd)/(2ε0κq) as unscreened electron–
impurity scattering potential and κ as the effective background
lattice dielectric constant depending on the substrate material.
ε(q) is the 2D static dielectric (screening) function due
to electron–electron interaction. Within the random phase
approximation it can be written as [40]

ε(q) = 1 + qs

q

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 q � 2kF

1 + πq

8kF
−

√
q2 − 4kF

2q

−q
2 sin−1(2kF/q) − π

8kF
q > 2kF

(9)
with qs = e2kF/(πε0h̄κvF) = 4kFrs as the effective Thomas–
Fermi wavevector in 2D graphene. Such u(q) leads to ai of the
form

ai = gsgvπni

Nh̄

∑
k,q

|u(q)|2|g(k, q)|2

× [v(k + q) − v(k)]δ(ε(k + q) − ε(k))

× [ f (ε̄(k), Te) − f (ε̄(k + q), Te)], (10)

with g(k, q) as the form factor relating to the electron
wavefunction by

g(k, q) = 〈k + q|k〉 = 1
2 (1 + ei(φk−φk+q)). (11)

In graphene, we also need to consider the deformation-
potential interactions between electrons and phonons including
longitudinal acoustic and optical branches. The corresponding
scattering matrix elements of these interactions can be written
as [34, 35]

|M(q, α)|2 = D2h̄ Q2
α

2Aρm�q,α

, (12)

with D as the deformation-potential coupling constant, ρm

as the graphene mass density, A as the area of the sample,
and �q,α as the frequency of the αth branch phonon with
wavevector q. Qα depends on the phonon modes: Qα = q
for acoustic phonon and Qα = 2π/a for optical phonon (a
is the lattice constant). Within the framework of the balance
equation approach, the electron–phonon scattering leads to the
acceleration and energy dissipation rate, ap and w, which take
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Figure 1. Dependencies of total mobility μ, impurity-limited
mobility μi, acoustic-phonon-limited mobility μa, and
optical-phonon-limited mobility μo on the lattice temperature.

the forms

ap = 2gsgvπ

Nh̄

∑
k,q,α

|M(q, α)|2|g(k, q)|2[v(k + q)

− v(k)]δ(ε(k + q) − ε(k) + h̄�q,α)

× [ f (ε̄(k), Te) − f (ε̄(k + q), Te)]
×

[
n

(
h̄�q,α

kBT

)
− n

(
ε̄(k) − ε̄(k + q)

kBTe

)]
, (13)

w = 2gsgvπ

Nh̄

∑
k,q,α

|M(q, α)|2|g(k, q)|2h̄�q,α

× δ(ε(k + q) − ε(k) + h̄�q,α)

× [ f (ε̄(k), Te) − f (ε̄(k + q), Te)]
×

[
n

(
h̄�q,α

kBT

)
− n

(
ε̄(k) − ε̄(k + q)

kBTe

)]
. (14)

In these equations, T is the lattice temperature and n(x) =
(ex − 1)−1 is the Bose function.

3. Numerical results

Solving the balance equations, (3) and (4), we perform a
numerical investigation on the nonlinear transport properties
of graphene. In the calculation, the frequency of longitudinal
optical (LO) phonon, �q,LO ≡ �LO, is assumed to be
independent of the momentum q and its value is chosen to be
�LO = 298.3 THz [41]. The frequency of the longitudinal
acoustic (LA) phonon is linear in q: �q,LA ≡ vslq , with
vsl as the longitudinal sound velocity. In typical graphene,
vsl = 2.0 × 104 m s−1 [42, 43]. The other parameters used
in the calculation are a = 2.45 Å, D = 19.0 eV, ρm = 7.6 ×
10−7 kg m−2, κ = 2.5 [26, 34], and vF = 1.1 × 106 m s−1 [3].
The impurity density ni is determined by zero-temperature
mobility, which is fixed at 10 m2 V s−1. The distance between
the layers of impurities and electrons is d = 0.1 nm. The
dependencies of calculated conductivity, σ ≡ vd/E , and
electron temperature Te on the lattice temperature T and/or
electric field E are plotted in figures 1–3.

Figure 2. Dependencies of conductivity σ and electron temperature
Te on the strength of external electric field E at various lattice
temperatures T .

Figure 3. The conductivity σ as a function of electric field E in
graphene with various carrier densities N at T = 300 K.

3.1. The linear case

In the limit of weak electric field, the inverse of total mobility,
1/μ[μ ≡ σ/(Ne)], is the sum of impurity contribution
1/μi, acoustic-phonon contribution 1/μa, and optical-phonon
contribution 1/μo:

1

μ
= 1

μi
+ 1

μa
+ 1

μo
. (15)
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The dependencies of these quantities on temperature in
graphene with the electron density N = 1 × 1016 m−2 are
shown in figure 1. We see that, at temperature less than 20 K,
the contributions to 1/μ from electron–phonon scattering
(both from the electron–acoustic-phonon and electron–optical-
phonon interactions) are less than 3%, and the impurity
scattering dominates the electron transport. With the increase
of temperature, the electron–phonon scattering becomes more
influential. When the temperature goes up as high as 300–
400 K, the effect of phonon scattering is comparable with
that of impurity scattering. As temperature reaches more than
about 700 K, the optical-phonon scattering is dominant in the
contribution to 1/μ.

It is noted that the linear transport properties of graphene
for d = 0 at zero temperature can be carried out analytically
within the balance equation approach. In this case, ai ≈
∂ai
∂pd

|pd=0 · pd and ap = 0. Substituting them into equation (3),

we can obtain pd = eE
π h̄ · kF

vF
· 1

G(2rs)ni
, with G(x) =

x2

16

∫ 2π

0
sin2 θ

(sin θ
2 +x)2 dθ . Hence, the drift velocity takes the form

vd ≈ ∂vd

∂pd

∣∣∣∣
pd=0

· pd = eE

π h̄
· 1

G(2rs)ni
, (16)

and the conductivity can be written as

σ = Nevd

E
= 2

G(2rs)

e2

h

N

ni
. (17)

For the chosen parameters, rs ≈ 0.8, G(2rs) ≈ 0.1 and hence
σ = 20 e2

h
N
ni

, agreeing with [26, 28].

3.2. The nonlinear case

Further, we perform a numerical investigation on the nonlinear
transport in graphene. The results are shown in figures 2
and 3. In all these plotted results, the maximum strength
of the electric field we consider is 10 kV cm−1 because
graphene breaks down under laser electric fields of 20 kV cm−1

(106 W cm−2 of power). In figure 2(a), conductivity σ

versus the electric field E at various lattice temperatures T
is shown. We see that, when E � 0.1 kV cm−1, the
conductivity remains practically unchanged with the increase
of E . This is associated with the fact that, for such low E ,
the electron–impurity scattering plays a dominant role. As
E becomes higher than 0.1–1 kV cm−1, σ declines evidently
due to the increase of electron–acoustic-phonon scattering.
In this case, the optical-phonon scattering as a dissipation
mechanism also indirectly limits the further increase of drift
velocity by influencing electron temperature Te. In figure 2(b),
the quantities of ratio Te/T are plotted as a function of the
electric field E at various lattice temperatures. At T = 300 K,
Te is approximately equal to the lattice temperature until E
increases to a value higher than 0.1 kV cm−1. At T = 77 K,
an apparent ascending Te/T comes out when E goes up to
3 × 10−3 kV cm−1. At T = 4 K, Te/T increases evidently
when the strength of the electric field is enhanced higher than
10−4 kV cm−1. When Te rises up to some critical point, 300–
400 K, for all the cases above, the rate of increment of Te/T

with respect to the electric field slows down since, at such
Te, the electron–optical-phonon scattering plays an important
role in energy dissipation, limiting the increase rate of electron
temperature.

In figure 3, conductivities versus the external electric
field E at room temperature 300 K are plotted for various
electron densities. It is clear that the conductivity σ is almost
independent of E for E � 0.1 kV cm−1 since the electron–
impurity scattering dominates. However, with an increase
of E , the impact of phonon scattering is more and more
effective in suppressing the electron drift velocity, making the
conductivity decline and approach zero. It is noted that the
graphene system with higher carrier density always has lower
resistivity.

4. Conclusions

Considering electron–impurity, election-acoustic-phonon, and
electron–optical-phonon, the transport properties of graphene
driven by a strong dc electric field have been studied by means
of the balance equation approach. It was found that with an
increase in the strength of electric field, conductivity versus E
shows strongly nonlinear behavior for E larger than the critical
value Ec ≈ 0.1 kV cm−1: the conductivity decreases slowly
for E < Ec while it falls rapidly for E > Ec. We have
also found that with the increase of E , the electron temperature
sharply increases to 300–400 K, at which, the optical-phonon
scattering effectively dissipates the energy coming from the
electric field.
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